Sunday 26 June 2011

Bioenergy

Bioenergy


Stirling engine capable of producing electricity from biomass combustion heat.
Renewable energy
Wind Turbine
Biofuel
Biomass
Geothermal
Hydroelectricity
Solar energy
Tidal power
Wave power
Wind power
v · d · e
Bioenergy is renewable energy made available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other byproducts from a variety of agricultural processes. By 2010, there was 35GW of globally installed bioenergy capacity for electricity generation, of which 7GW was in the US.[1]
In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the social, economic, scientific and technical fields associated with using biological sources for energy. This is a common misconception, as bioenergy is the energy extracted from the biomass, as the biomass is the fuel and the bioenergy is the energy contained in the fuel.[2]
There is a slight tendency for the word bioenergy to be favoured in Europe compared with biofuel in North America.[citation needed]

Electricity from sugarcane bagasse in Brazil

Electricity from sugarcane bagasse in Brazil

Sugarcane (Saccharum officinarum) plantation ready for harvest, Ituverava, São Paulo State. Brazil.
Sugar/Ethanol Plant located in Piracicaba, São Paulo State. This plant produces the electricity it needs from bagasse residuals from sugarcane left over by the milling process, and it sells the surplus electricity to the public grid.
Sucrose accounts for little more than 30% of the chemical energy stored in the mature plant; 35% is in the leaves and stem tips, which are left in the fields during harvest, and 35% are in the fibrous material (bagasse) left over from pressing.
The production process of sugar and ethanol in Brazil takes full advantage of the energy stored in sugarcane. Part of the bagasse is currently burned at the mill to provide heat for distillation and electricity to run the machinery. This allows ethanol plants to be energetically self-sufficient and even sell surplus electricity to utilities; current production is 600 MW for self-use and 100 MW for sale. This secondary activity is expected to boom now that utilities have been induced to pay "fair price "(about US$10/GJ or US$0.036/kWh) for 10 year contracts. This is approximately half of what the World Bank considers the reference price for investing in similar projects (see below). The energy is especially valuable to utilities because it is produced mainly in the dry season when hydroelectric dams are running low. Estimates of potential power generation from bagasse range from 1,000 to 9,000 MW, depending on technology. Higher estimates assume gasification of biomass, replacement of current low-pressure steam boilers and turbines by high-pressure ones, and use of harvest trash currently left behind in the fields. For comparison, Brazil's Angra I nuclear plant generates 657 MW.

Solid biomass

Solid biomass

Simple use of biomass fuel (Combustion of wood for heat).
One of the advantages of biomass fuel is that it is often a by-product, residue or waste-productof other processes, such as farming, animal husbandry and forestry.[1] In theory this means there is no competition between fuel and food production, although this is not always the case.[1]
Biomass is material derived from recently living organisms, which includes plants, animals and their byproducts.[3] Manure, garden waste and crop residues are all sources of biomass. It is a renewable energy source based on the carbon cycle, unlike other natural resources such as petroleum, coal, and nuclear fuels. Another source includes Animal waste, which is a persistent and unavoidable pollutant produced primarily by the animals housed in industrial-sized farms.
There are also agricultural products specifically being grown for biofuel production. These include corn, and soybeans and to some extent willow and switchgrass on a pre-commercial research level, primarily in the United States; rapeseed, wheat, sugar beet, and willow (15,000 ha in Sweden) primarily in Europe; sugarcane in Brazil; palm oil and miscanthus in Southeast Asia; sorghum and cassava in China; and jatropha in India. Hemp has also been proven to work as a biofuel. Biodegradable outputs from industry, agriculture, forestry and households can be used for biofuel production, using e.g. anaerobic digestion to produce biogas, gasification to produce syngas or by direct combustion

Types of energy crops

Types of energy crops

[edit] By destination

[edit] Solid Biomass

Note: The terms biofuel, biomass, and so on, are often used interchangeably.
Energy generated by burning plants grown for the purpose, often after the dry matter is pelletized. Energy crops are used for firing power plants, either alone or co-fired with other fuels. Alternatively they may be used for heat or combined heat and power (CHP) production.

[edit] Gas biomass (Methane)

Anaerobic digesters or biogas plants can be directly supplemented with energy crops once they have been ensiled into silage. The fastest growing sector of German biofarming has been in the area of "Renewable Energy Crops" on nearly 500,000 ha land (2006). Energy crops can also be grown to boost gas yields where feedstocks have a low energy content, such as manures and spoiled grain. It is estimated that the energy yield presently of bioenergy crops converted via silage to methane is about 2 GWh/km². Small mixed cropping enterprises with animals can use a portion of their acreage to grow and convert energy crops and sustain the entire farms energy requirements with about 1/5 the acreage. In Europe and especially Germany, however, this rapid growth has occurred only with substantial government support, as in the German bonus system for renewable energy.Similar developments of integrating crop farming and bioenergy production via silage-methane have been almost entirely overlooked in N. America, where political and structural issues and a huge continued push to centralize energy production has overshadowed positive developments.

[edit] Liquid biomass

[edit] Biodiesel
European production of biodiesel from energy crops has grown steadily in the last decade, principally focused on rapeseed used for oil and energy. Production of oil/biodiesel from rape covers more than 12,000 km² in Germany alone, and has doubled in the past 15 years. Typical yield of oil as pure biodiesel may be is 100,000 L/km² or more, making biodiesel crops economically attractive, provided sustainable crop rotations exist that are nutrient-balanced and preventative of the spread of disease such as clubroot. Biodiesel yield of soybeans is significantly lower than that of rape.

Energy crop

Energy crop

From Wikipedia, the free encyclopedia
An energy crop is a plant grown as a low cost and low maintenance harvest used to make biofuels, or combusted for its energy content to generate electricity or heat. Energy crops are generally categorized as woody or herbaceous (grassy).
Commercial energy crops are typically densely planted, high yielding crop species where the energy crops will be burnt to generate power. Woody crops such as Willow [1] or Poplar are widely utilised, as well as temperate grasses such as Miscanthus and Pennisetum purpureum (both known as elephant grass).[2] If carbohydrate content is desired for the production of biogas, whole-crops such as maize, Sudan grass, millet, white sweet clover and many others, can be made into silage and then converted into biogas.
Through genetic modification and application of biotechnology plants can be manipulated to create greater yields, reduce associated costs and require less water. However, high energy yield can be realized with existing cultivars.

Biochemical conversion

Biochemical conversion

A microbial electrolysis cell can be used to directly make hydrogen gas from plant matter
As biomass is a natural material, many highly efficient biochemical processes have developed in nature to break down the molecules of which biomass is composed, and many of these biochemical conversion processes can be harnessed.
Biochemical conversion makes use of the enzymes of bacteria and other micro-organisms to break down biomass. In most cases micro-organisms are used to perform the conversion process: anaerobic digestion, fermentation and composting. Other chemical processes such as converting straight and waste vegetable oils into biodiesel is transesterification.[11] Another way of breaking down biomass is by breaking down the carbohydrates and simple sugars to make alcohol. However, this process has not been perfected yet. Scientists are still researching the effects of converting biomass.

Biomass sources

Biomass sources

Wood is a typical source of biomass
Biomass energy is derived from five distinct energy sources: garbage, wood, waste, landfill gases, and alcohol fuels. Wood energy is derived both from direct use of harvested wood as a fuel and from wood waste streams. The largest source of energy from wood is pulping liquor or “black liquor,” a waste product from processes of the pulp, paper and paperboard industry. Waste energy is the second-largest source of biomass energy. The main contributors of waste energy are municipal solid waste (MSW), manufacturing waste, and landfill gas. Biomass alcohol fuel, or ethanol, is derived primarily from sugarcane and corn. It can be used directly as a fuel or as an additive to gasoline.[5]
Biomass can be converted to other usable forms of energy like methane gas or transportation fuels like ethanol and biodiesel. Rotting garbage, and agricultural and human waste, release methane gas - also called "landfill gas" or "biogas." Crops like corn and sugar cane can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products like vegetable oils and animal fats.[6] Also, Biomass to liquids (BTLs) and cellulosic ethanol are still under research.[7][8]